Thermochimica Acta, 93 (1985) 677-680 Elsevier Science Publishers **B.V., Amsterdam**

> PHASE DIAGRAMS OF THE $2nP_2-2nAs_2$ AND $2nP_2-CaP_2$ SYSTEMS

E.M.Smolyarenkof V.M.Trukhan, Institute of Solid State Physics and Semiconductors, Byelorussian Academy of Sciences, Minsk, USSR

ABSTRACT

The fusibility diagrams of the $2nP_2-2nAs_2$ systems are studied. It is established that in the ZnP_{2} - ZnA and ZnP₂-CdP₂ system there exists a continuous series of solid solutions, while intermedfate br phase diagram belongs to the peritectic type with intermed fate brdered phase.

INTRODUCTION

This work is aimed at investigating the fusibility diagram of the $2nP_2-CdP_2$ and $2nAs_2-CdAs$ systems. The $2nP_2$ compound exists steadily in two modifications: monoclinic with the space group C_{2h}^2 , and tetragonal - with the space group D_4^O . The ZnAs₂ compound belongs to the space group $\mathbb{C}_{2\text{h}}^\times$ and the $\left(\texttt{dP}_2\right)$ compound - to the space group D_{A}^{O} . The difference in the interatomic distances of the compounds in the investigated systems meets the requirements of the formation of solid solution continuous series.

RESULTS AND DISCUSSION

a) THE $2nP_2-2nAs_2$ SYSTEM

The alloys of the ZnP_2-ZnAs_2 systems have been synthesized from the starting substances in quartz ampoules evacuated to 10^{-3} Pa. The ampoule has been heated up to the temperature exceeding that of the supposed liquidus line, subjected to low frequency vibration for 2 hours, then the temperature has been lowered end the homogeneous annealing for 10 d has been carried out. The X-ray end microstructure analyses have shown that all the obtained samples have single phase and crystallize in monoclinic syngony, with the lattice parameters varying in accordance with Vegard's law. Thus, the quasi-binary eection under investigation represents a continuous series of solid solutions. The differential thermal analyses (DTA) has been performed on an apparatus with the accuracy of temperature measurement up to 2 K. Calcinated alumina

has been used as a reference material. The heating rate has been 3 to 5 Khin. The solidus and liquidus temperatures have been determined using only the heating curves, since the effects, appearing on the cooling curves, are due to nonequilibrium state of solid solutions.

The differential curves have been interpreted in accordance with /I/. Pig. 1 gives the obtained DTA data. From the experi-

mental solidus and liquidus temperatures of the ZnP_{2} -ZnAs₂ system we have calculated the interaction parameters for the solid (k^3) and liquid (k^1) phases to be $k^{S_{\infty}}$ - 10000 J/mol and k^2 = - 18800 J/mol. The interaction parameters do not depend on the solid solution composition.

The interaction paremeter values have been used for calculating the solidus and liquidus lines in approximation of the theory of regular solutions:

$$
\ln \frac{1-x^{s}}{1-x^{t}} = \frac{(x^{t})^{2} \cdot K^{t}}{RT} - \frac{(x^{s})^{2} \cdot K^{s}}{RT} - \frac{\Delta S_{1}}{R} (1-\frac{T_{1}}{T}),
$$

$$
\ln \frac{x^{s}}{x^{t}} = \frac{(1-x^{t})^{2} \cdot K^{t}}{RT} - \frac{(1-x^{s})^{2} \cdot K^{s}}{RT} - \frac{\Delta S_{2}}{R} (1-\frac{T_{2}}{T}),
$$

where x^1 and x^3 - the concentration of ZnP_2 in the liquid and solid phases; S_1 - the entropy of fusion of $2nP_2$; S_2 the entropy of fusion of ZnAs₂; T_1 and T_2 - the temperatures of melting of $2nP_2$ and $2nAs_2$, respectively.

For calculations the empirically obtained entropies of fusion /2/ have been obtained.

Fig. 1 shows the liquidus and solidus lines in the ZnP_{2} -ZnAs₂ system calculated in approximation of the theory of ideal and

regular solutions. The approximation of regular solutions agree well with the experimental points. The heats of mixture in solid and liquid phases have been determined from the interaotlon parameters:

$$
H_{\text{mix}}^S = K^S X (1-X); \qquad H_{\text{mix}}^1 = K^T X (1-X)
$$

The concentration dependence of the heats of mixture is given in Fig. 2. Fig. 3 shows the concentration dependence of the activity of the components in the liquid and solid phases calculated by the relatians:

$$
\ln \chi_{2nP_2}^{\ell} = \frac{K^{\ell}}{RT} (1 - x_{2nP_2})^{\ell}; \quad \ln \chi_{2nP_{22}}^{\ell} = \frac{K^{\ell}}{RT} \chi_{2nP_2}^{\ell}
$$

$$
\ln \chi_{2nP_2}^{\epsilon} = \frac{K^{\epsilon}}{RT} (1 - x_{2nP_2})^{\epsilon}; \quad \ln \chi_{2nP_{22}}^{\epsilon} = \frac{K^{\epsilon}}{RT} \chi_{2nP_2}^{\epsilon}
$$

Fig. **2**

tivity coefficient. Since the interaction parameters, liquid and solid phases and, consequently, the heats of mixture end deviations from Raoult's law are negative, it is obvious that in the $2nP_2-ZnAs_2$ alloys there exists a strong interaction between different atoms, i.e. between P and As. b) THE $2nP_2-\text{Cd}P_2$

where $X - th$ e ac-

SYSTEM

The synthesis of the alloys and DTA have been out using the procedure described above. To deter-

mine the solubility boundaries in solid state a part of alloys has been subjected to quenching at different temperatures.

Fig. 4 illustrates the ZnP_{2} -CdP₂ phase diagram plotted from the DTA and X-ray analyses data. The ZnP_2 - rich alloys have a monoclinic structure, with a monoclinic ordered phase occupying a considerable area. The solubility of $2nP₂$ in the tetragonal GdP_2 is small. Large difference in the melting temperature of the components of the investigated system results in the

Fig. 3

Fig. 4

existence of nonvariant peritectic equilibrium.

CONCLUSION

As could be expected the identity of the crystal lattice of the monoclinic ZnAs₂ and ZnP₂, small difference (6.7%) in interatomic distances leads to the formation of solid solutions over the whole concentration range. In the ZnP₂-CdP₂ system the distances between different atoms vary by 9.2%. Apparently, this fact combined with unfavourable entropy factor and substantial difference in melting temperatures hinder the formation of substitutional solid solutions and leads to a complex phase diagram.

REFERENCES

- 1. V.Cramer. Investigations of sulphide systems by thermal analyses. J. of Thermal Analyses. V. 16 (1979), 295.
2. A.S.Jordan.
- Some Thermodinamic Properties of
ZnAs,, CdAs,, and ZnP,.
J. of Electrochemical Society. V. 118, N 8 (1971), $1362.$

 $-680 -$